\square

Question Paper Code : X 60771

B.E./B.Tech. DEGREE EXAMINATIONS, NOV./DEC. 2020

Fourth/Fifth/Sixth Semester
Civil Engineering
MA 2264/10177 MA 401/080280026/10144 ECE 15/MA 41/MA 51-- NUMERICAL METHODS
(Common to all Branches)
(Regulations 2008/2010)
Time : Three Hours
Maximum : 100 Marks
Answer ALL questions.
PART - A
(10×2=20 Marks)

1. Write down the condition for convergence of Newton-Raphson method for $f(x)=0$.
2. Find the inverse of $\mathrm{A}=\left(\begin{array}{ll}1 & 3 \\ 2 & 7\end{array}\right)$ by Gauss-Jordon method.
3. Find the second divided difference with arguments a, b, c if $f(x)=\frac{1}{x}$
4. Define cubic spline.
5. Evaluate $\int_{-2}^{2} \mathrm{e}^{\frac{-\mathrm{x}}{2}} \mathrm{dx}$ by Gauss two point formula.
6. Evaluate $\int_{0}^{6} \frac{\mathrm{dx}}{1+\mathrm{x}^{2}}$ using Trapezoidal rule.
7. Find $\mathrm{y}(1,1)$ if $\mathrm{y}^{\prime}=\mathrm{x}+\mathrm{y}, \mathrm{y}(1)=0$ by Taylor series method.
8. State Euler's formula.
9. State Crank-Nicholson's difference scheme.
10. Write down Bender-Schmidt's difference scheme in general form and using suitable value of λ, write the scheme in simplified form.

X 60771
11. a) i) Solve the equations by Gauss-Seidel method of iteration.

$$
\begin{equation*}
10 \mathrm{x}+2 \mathrm{y}+\mathrm{z}=9, \mathrm{x}+10 \mathrm{y}-\mathrm{z}=-22,-2 \mathrm{x}+3 \mathrm{y}+10 \mathrm{z}=22 . \tag{8}
\end{equation*}
$$

ii) Determine the largest eigen value and the corresponding eigen vector of the matrix $\left(\begin{array}{ccc}1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10\end{array}\right)$ with $\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)^{\mathrm{T}}$ as the initial vector by power method.
(OR)
b) i) Find the inverse of the matrix $\left(\begin{array}{ccc}3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2\end{array}\right)$ using Gauss-Jordon
method.
ii) Using Newton's method, find the real root of $\mathrm{x} \log _{10} \mathrm{x}=1.2$ correct to five decimal places.
12. a) i) Using Newton's forward interpolation formula, find the cubic polynomial which takes the following values:

x	0	1	2	3
$\mathrm{f}(\mathrm{x})$	1	2	1	10

ii) Obtain the cubic spline approximation for the function $y=f(x)$ from the following data, given that $\mathrm{y}_{0}{ }^{\prime \prime}=\mathrm{y}^{\prime \prime}{ }_{3}=0$.

x	-1	0	1	2
y	-1	1	3	35

(OR)
b) i) By using Newton's divided difference formula find $f(8)$, given

x	4	5	7	10	11	13
$\mathrm{f}(\mathrm{x})$	48	100	294	900	1210	2028

ii) Find the polynomial $f(x)$ by using Lagrange's formula and hence find $f(3)$ for the following values of x and y :

x	0	1	2	5
y	2	3	12	147

13. a) i) Find $f^{\prime}(x)$ at $x=1.5$ and $x=4.0$ from the following data using Newton's formulae for differentiation.

$$
\begin{array}{ccccccc}
\mathrm{x}: & 1.5 & 2.0 & 2.5 & 3.0 & 3.5 & 4.0 \\
\mathrm{y}=\mathrm{f}(\mathrm{x}) & : & 3.375 & 7.0 & 13.625 & 24.0 & 38.875
\end{array}
$$

ii) Compute $\int_{0}^{\pi / 2} \sin x d x$ using Simpson's $3 / 8$ rule.
b) Evaluate $\int_{0}^{2} \int_{0}^{1} 4 x y d x d y$ using Simpson's rule by taking $\mathrm{h}=\frac{1}{4}$ and $\mathrm{k}=\frac{1}{2}$.
14. a) i) Using Taylor series method to find $y(0.1)$ if $y^{\prime}=x^{2}+y^{2}, y(0)=1$
ii) Using Runge-Kutta method find $\mathrm{y}(0.2)$ if $\mathrm{y}^{\prime \prime}=\mathrm{xy}^{2}-\mathrm{y}^{2}, \mathrm{y}(0)=1$, $y^{\prime}(0)=0, h=0.2$.

(OR)

b) i) Solve $y^{\prime}=\frac{y-x}{y+x}, y(0)=1$ at $x=0.1$ by taking $h=0.02$ by using Euler's method.
ii) Using Adam's method to find $y(2)$ if $y^{\prime}=(x+y) / 2 y(0)=2, y(0.5)=2.636$, $y(1)=3.595, y(1.5)=4.968$.
15. a) i) Using Bender-Schmidt's method solve $\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t} \operatorname{given} u(0, t)=0, u(1, t)=0$ $u(x, 0)=\sin \pi x, 0<x<1$ and $h=0.2$. Find the value of u upto $t=0.1$.
ii) Solve $y^{\prime \prime}-y=x, x$ by $x \in(0,1)$ given $y(0)=y(1)=0$ using finite differences by dividing the interval into four equal parts.
(OR)
b) i) Solve the Poisson equation $\nabla^{2} u=-10\left(x^{2}+y^{2}+10\right), 0 \leq x \leq 3,0 \leq y \leq 3$, $u=0$ on the boundary.
ii) Solve the wave equation $\frac{\partial^{2} \mathrm{u}}{\partial \mathrm{x}^{2}}=\frac{\partial^{2} \mathrm{u}}{\partial \mathrm{t}^{2}}, 0<\mathrm{x}<1, \mathrm{t}>0, \mathrm{u}(0, \mathrm{t})=\mathrm{u}(1, \mathrm{t})=0, \mathrm{t}>0$, $u(x, 0)-\left\{\begin{array}{l}1,0 \leq x \leq 0.5 \\ -1,0.5 \leq x \leq 1\end{array}\right.$ and $\frac{\partial u}{\partial t}(x, 0)=0$, using $h=k=0.1$, find u for three time steps.

